EXTEND HEALTHSPAN

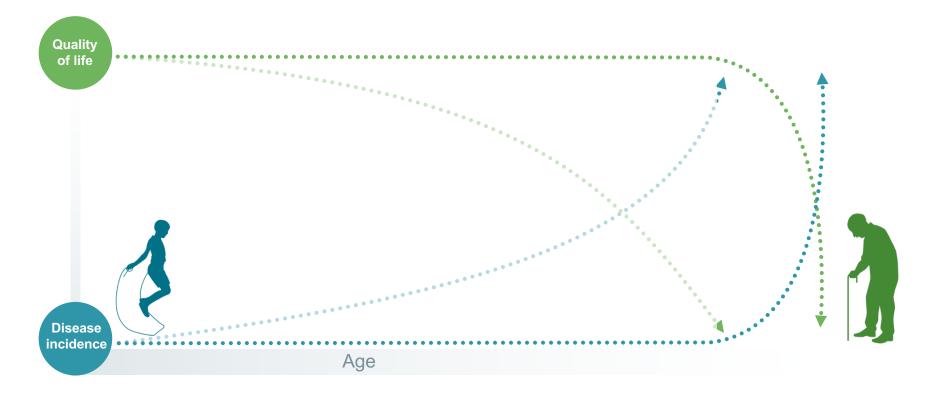
March 2019

SPECIAL NOTE REGARDING FORWARD-LOOKING STATEMENTS

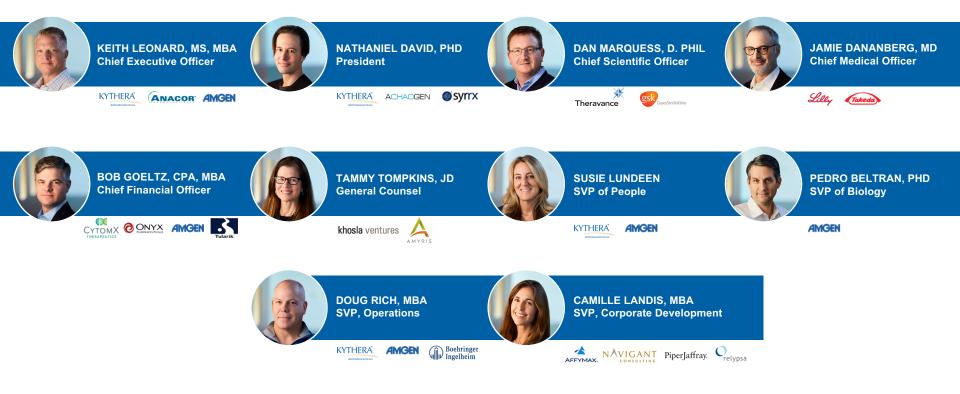
This presentation and the accompanying oral commentary contain forward-looking statements, including: statements related to our understanding of cellular senescence and the role cellular senescence plays in diseases of aging; our expectations regarding the potential benefits, activity, effectiveness and safety of senolytic drug candidates; the status of our our preclinical, clinical and regulatory development plans and pipeline; our expectations with regard to the results of our clinical studies; and our expectations with regard to our ability to acquire, discover and develop additional drug candidates and advance such drug candidates into, and successfully complete, clinical studies. These statements involve substantial known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to be materially different from the information expressed or implied by these forward-looking statements. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. The forward-looking statements in this presentation represent our views as of the date of this presentation. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements at some point in the future, we have no current intention of doing so except to the extent required by applicable law. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of the Company in general, see UNITY's most recently filed Annual Report on Form 10-K for the year ended December 31, 2018, filed with the Securities and Exchange Commission on March 6, 2019, as well as other documents that may be filed by UNITY from time to time with the Securities and Exchange Commission.

This presentation concerns drug candidates that are under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration. They are currently limited by Federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.



Health-span |helth' span | *noun* The period of one's life unburdened by the diseases of aging *See also: anti-aging, healthy longevity*



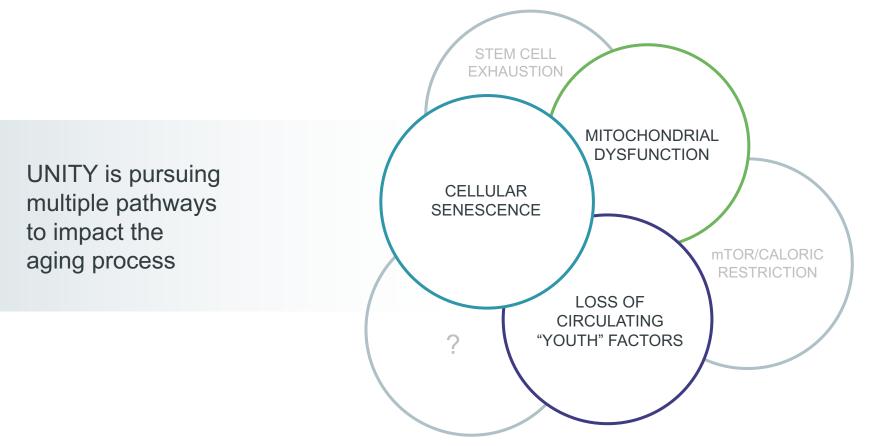
UNITY IS ADVANCING THERAPIES TO EXTEND HEALTHSPAN

MANAGEMENT An experienced team with a track record of success

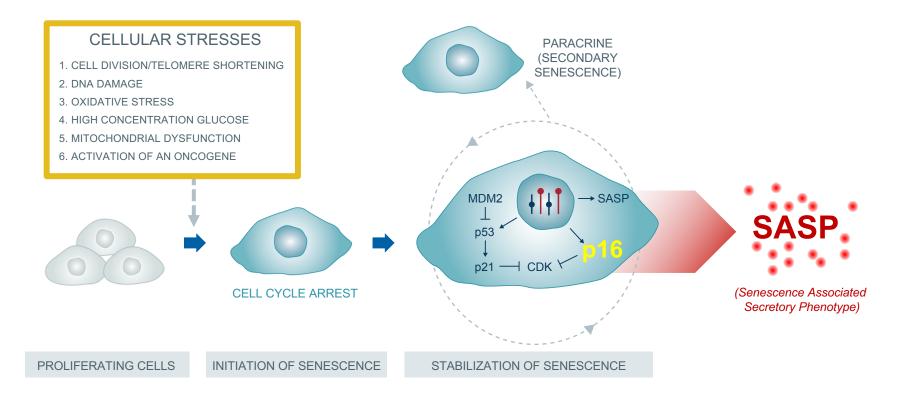
A NEW HEALTH PARADIGM

UNITY is committed to reshaping human healthspan

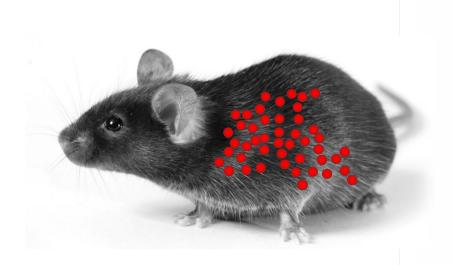
BREAKTHROUGH SCIENCE	 Broad approach to healthspan with initial efforts focused on cellular senescence Cutting edge science published in <i>Science</i> and <i>Nature</i> Tractable molecular targets with a clear tie to disease phenotypes IP portfolio covering senolytic approach, key pathways, target indications and molecules
COMPELLING OPPORTUNITY	 Many disease phenotypes with large unmet need Phase 1 study of UBX0101 in patients with osteoarthritis ongoing; data expected Q2 2019 Ophthalmology IND expected in early 2020 enabling multiple indications
EXPERIENCED TEAM	 Seasoned executive team with broad biotech experience Strong track record of delivering for patients and investors
STRONG FINANCIAL POSITION	 Cash equivalents and investments balance of \$171.1 million as of December 31, 2018


UNITY PIPELINE

Broad therapeutic potential, addressing multiple mechanisms of aging


BIOTECHNOLOGY

MULTIPLE MECHANISMS DRIVE AGING


CELLULAR STRESSES TRIGGER SENESCENCE

THE BREAKTHROUGH THAT CREATED A FIELD

UNITY's proprietary models revealed the relevance of SnC clearance to the aging process

Clearance of p16^{Ink4a}-positive senescent cells delays ageing-associated disorders

Darren J. Baker^{1,2,3}, Tobias Wijshake^{1,4}, Tamar Tchkonia³, Nathan K. LeBrasseur^{3,5}, Bennett G. Childs¹, Bart van de Sluis⁴, James L. Kirkland³ & Jan M. van Deursen^{1,2,3}

Advanced age is the main risk factor for most chronic diseases and we bred each of the founder lines onto a BubR1 hypomorphi orders and maximize healthy lifespan. Cellular senescence, which activity of Cdc20-activated anaphase-promoting complex (APCC important mechanism to constrain the malignant progression of markedly shortened lifespan and exhibit a variety of age-related pheno structure and function because of the components they secrete4.5. However, whether senescent cells are causally implicated in agemade use of a biomarker for senescence, p16^{lnkta}, to design a novel transgene, *INK-ATTAC*, for inducible elimination of p16^{lnkta}. show that in the BubR1 progeroid mouse background, INK-

functional deficits in humans, but the fundamental mechanisms (BubR1^{10,1}) genetic background. BubR1 encodes a key member of the that drive ageing remain largely unknown, impeding the develop-mitotic checkpoint, a surveillance mechanism that ensures accurate ment of interventions that might delay or prevent age-related dis- chromosome segregation in mitosis by inhibiting the ubiquitin ligas halts the proliferation of damaged or dysfunctional cells, is an the presence of unattached chromosomes^{10,11}. BubRI^{10,11} mice have a tumour cells^{1,2}. Senescent cells accumulate in various tissues and types, including infertility, lordokyphosis, sarcopenia, cataracts, fat loss, organs with ageing' and have been hypothesized to disrupt tissue cardiac arrhythmias, arterial wall stiffening, impaired wound healing and dermal thinning12-14. It has been proposed that BubR1 is a determinant of natural ageing, because levels of BubR1 decline markedly with related dysfunction and whether their removal is beneficial has age¹²⁻¹⁴, BubR1^{11/14} mice selectively accumulate p16^{trik4a}-positive cells in remained unknown. To address these fundamental questions, we certain tissues in which age-associated pathologies develop, including adipose tissue, skeletal muscle and eye15. Inactivation of p16 Inkta in these mice is known to delay the onset of age-related phenotypes selectively in positive senescent cells upon administration of a drug. Here we these tissues¹⁵. To screen for INK-ATTAC transgene activity in p16^{th648}. positive cells, we collected samples of inguinal adipose tissue (IAT) from ATTAC removes p16^{thk4a}-positive senescent cells upon drug treatment. In tissues-such as adipose tissue, skeletal muscle and eye- analysed them for GFP expression by fluorescence microscopy. We

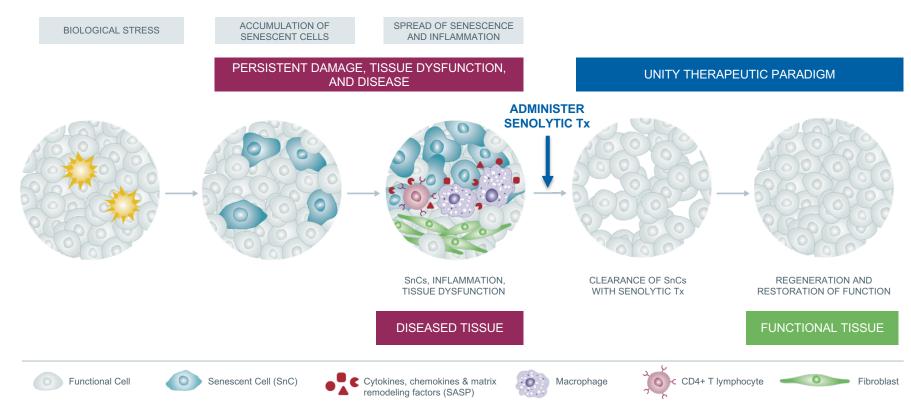
UNITY's founding scientific team was the first group to demonstrate that the removal of senescent cells significantly slowed aging

CLEARING SnCs: SIGNIFICANT IMPACT ON AGING

- Kidney dysfunction
- Cardiac dysfunction
- Cardiac hypertrophy
- Frailty
- Cataracts

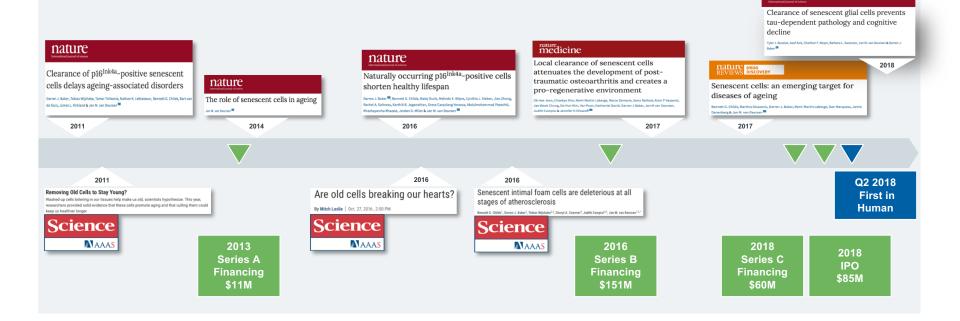
- Kyphosis
- Loss of subcutaneous fat
- Sarcopenia
- Reduced locomotion
- Cancer

SIGNIFICANT EXTENSION OF HEALTHSPAN


(AND UP TO 35% INCREASE IN MEDIAN LIFESPAN)

Baker et al., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 2011;479:232-236.

11 As of March 6, 2019 Baker et al., Naturally occurring p16lnk4a-positive cells shorten healthy lifespan. Nature 2016, 2016;530:184-190.

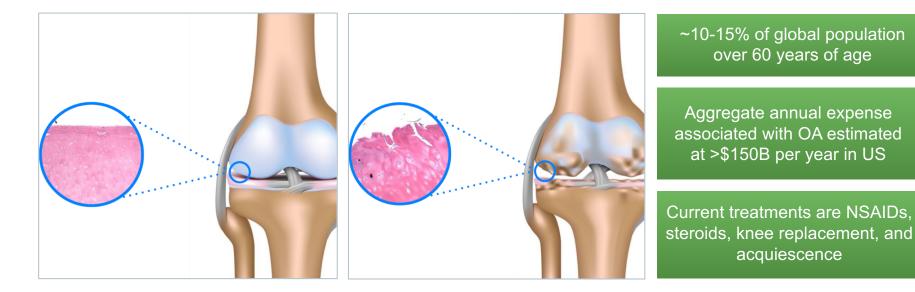


THE UNITY THERAPEUTIC PARADIGM

UNITY: ESTABLISHING LEADERSHIP IN HEALTHSPAN

Robust funding for R&D with notice in prestigious scientific journals

nature


OSTEOARTHRITIS

(MUSCULOSKELETAL INDICATION)

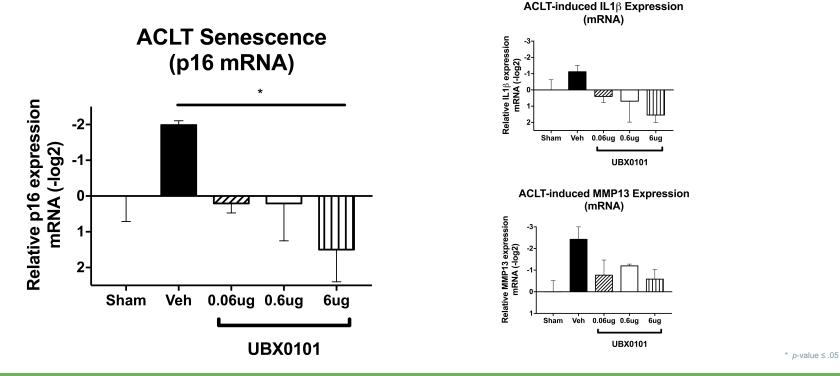
OSTEOARTHRITIS

A widespread disease; standard of care is pain mitigation or joint replacement

OPPORTUNITY FOR OA DISEASE MODIFICATION The promise of a senolytic therapy

MECHANISM Novel mechanism to address root cause of OA, *remove source of multiple SASP factors driving disease*

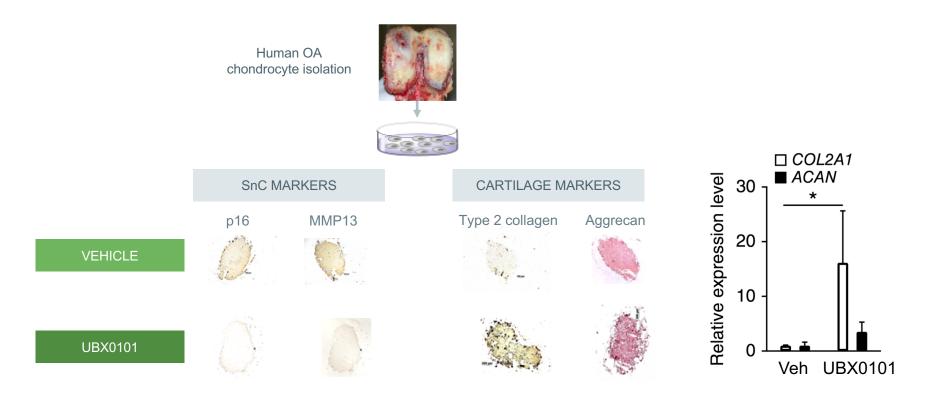
Tx IMPACT Potential to be **1**st **disease-modifying therapy for OA**; slow, halt or reverse disease, decrease pain and improve function


FREQUENCY Senolytic treatment likely requires *infrequent, intermittent dosing*

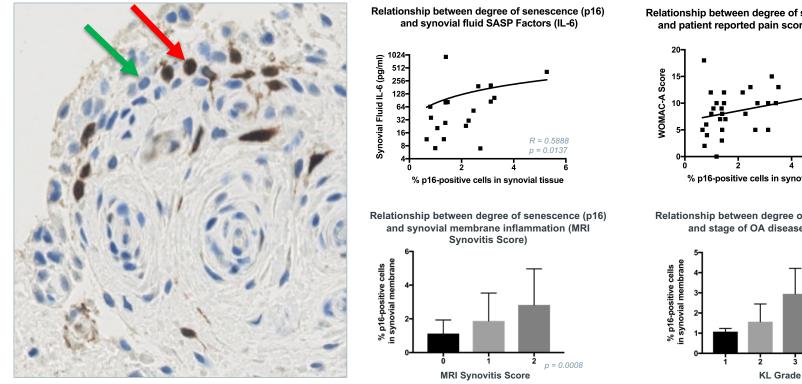
Tx

UBX0101 EFFICACY IN VIVO

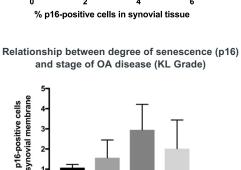
Intra-articular dosing eliminates senescent cells and modulates SASP in mice


IA dosing of UBX0101 eliminates p16⁺ SnCs and reduces OA-relevant SASP factors

Unpublished UNITY Data


UBX0101 EFFICACY EX VIVO

Diseased tissue exposed to UBX0101 upregulates expression of key components of cartilage

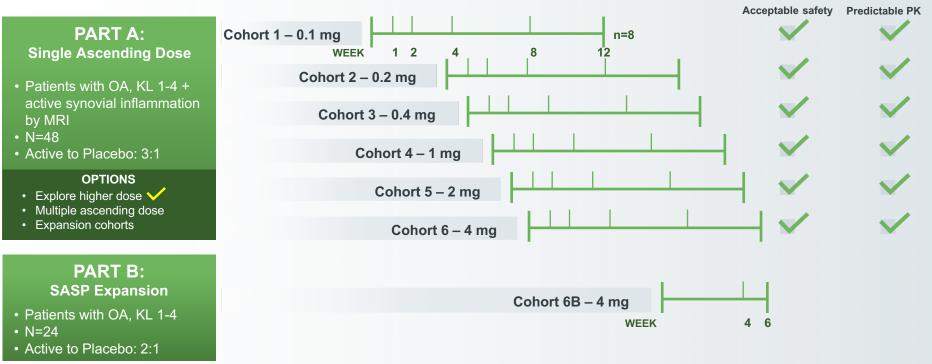


INCREASED SnCs OBSERVED IN KNEES OF OA PATIENTS

Relationship between degree of senescence (p16) and patient reported pain scores (WOMAC-A)

R = 0.4554

p = 0.0147


In 30 patients, senescence burden correlated directly with pain, arthritic severity, and inflammation

p = 0.005 for

KL Grade 1-3

UBX0101 PHASE 1 PROGRAM

Primary Measure (Part A & B): Safety

Secondary Measures (Part A): Plasma PK, Semi-quantitative assessment of synovitis by MRI,11-Point NRS pain assessment, WOMAC-A (pain), WOMAC-B (function), & total WOMAC, Synovial fluid SASP factors

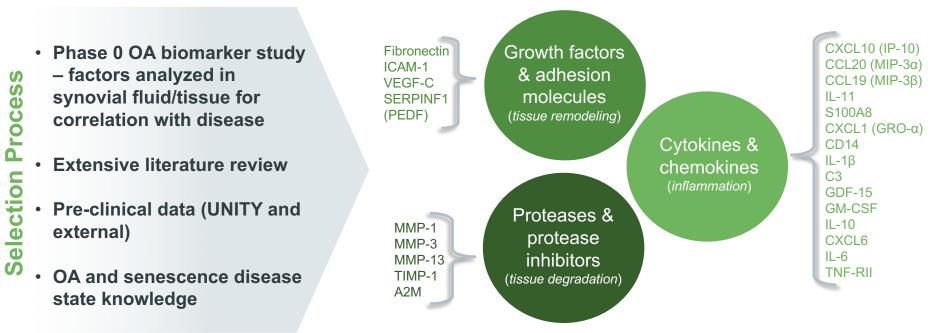
Secondary Measures (Part B): Synovial fluid SASP factors, Plasma PK, WOMAC-A (pain)

20 As of March 6, 2019

MEASURING PHASE 1 OA STUDY SUCCESS

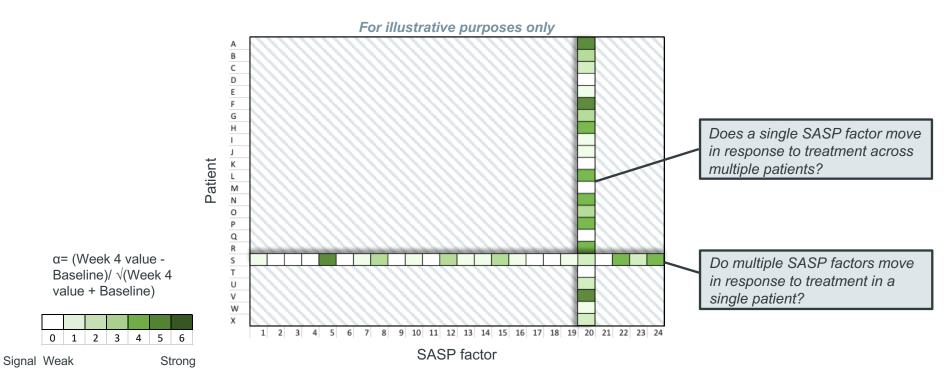
	MEASURE	"SUCCESS"	IMPLICATION
	Safety	Acceptable safety	Viable candidate
	Tolerability	Acceptable tolerability	Viable candidate
	Pharmacokinetics	Predictable pharmacokinetics	Viable candidate
	SASP	Reduction in factors	Proof-of-biology
UPSIDE	Synovitis	Reduction in synovitis	Proof-of-concept
	Pain	"Believable" reduction in pain	Proof-of-concept

OA IS BELIEVED TO BE A MULTIFACTORIAL DISEASE



SASP factors may impact synovial fluid and lining, cartilage and subchondral bone

Mathiessen et al., Arthritis Research and Therapy 2017


PHASE 1 MEASUREMENT OF POTENTIAL SASP FACTORS Study will assess up to 24 factors in synovial fluid believed to be relevant to human OA

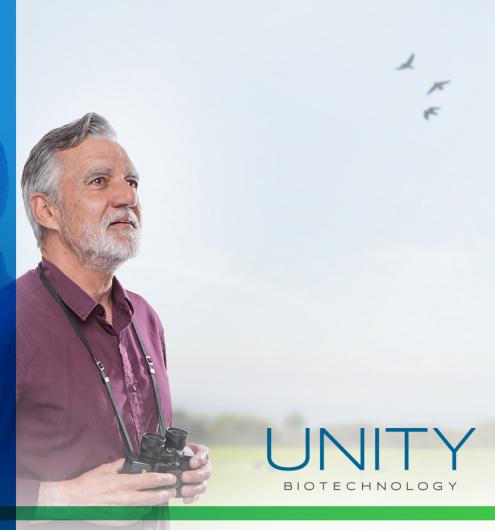
OA is believed to be a heterogeneous and multifactorial disease; Ph 1 will assess multiple implicated SASP factors

PHASE 1 SASP MEASUREMENT Example SASP trend analysis: baseline vs 4 week post dose

Analysis designed to identify relationship between SASP factor(s) and treatment

PHASE 1 OA SASP MEASUREMENT EXPECTATIONS

Heterogeneous: variability between patients in SASP factor presence/levels is likely


Multifactorial, some SASP factors may play a more dominant role in disease than others: not all SASP factors are likely to demonstrate the same magnitude of change

Change in a subset of SASP factors has the potential to impact disease pathology, inform OA disease state and senescence biology

OPTHALMOLOGY

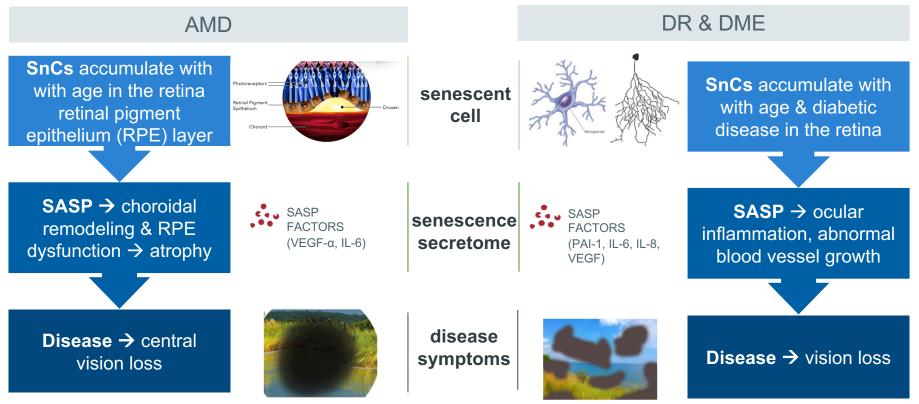
(AGE-RELATED EYE DISEASE INDICATIONS)

UNITY PIPELINE

Broad therapeutic potential, addressing multiple mechanisms of aging

BIOTECHNOLOG

AGE-RELATED EYE DISEASES ARE SIGNIFICANT PUBLIC HEALTH BURDENS


Leading causes of visual disability in aging populations, which may be treatable with a senolytic

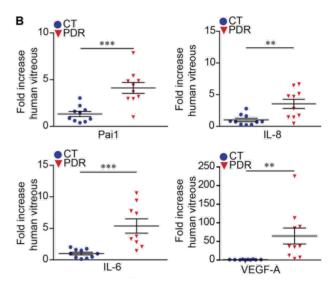
	AGE-RELATED MACULAR DEGENERATION (AMD)	DIABETIC RETINOPATHY (DR)	DIABETIC MACULAR EDEMA (DME)
GLOBAL IMPACT	 Leading cause of visual disability in industrialized world; 3rd leading cause globally Aging is the greatest risk factor 	 <i>Leading cause of vision loss</i> in middle-aged and elderly Impacts <i>8% of people</i> >65 years old 	 A manifestation of DR that is the primary cause of vision loss for people with diabetes
GLOBAL PREVALANCE	 170M people affected Expected to increase to 285M+ by 2040 	 90M+ people affected; 28M with vision-threatening disease stages ~33% of people with diabetes have signs of DR 	 20M+ people affected
CURRENT TREATMENTS	 Anti-VEGF agents, laser therapy 	 Diabetes control, anti-VEGF agents, laser photocoagulation 	 Diabetes control, corticosteroids, anti-VEGF agents, laser photocoagulation
GLOBAL MARKET SIZE		 >\$8B in global annual anti-VEGF sale 	es

SENESCENCE AGE-RELATED EYE DISEASE HYPOTHESES

SnCs accumulate in the retina, contributing to disease phenotypes

Oubaha et al., Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy, Sci. Transl. Med. 8, 362ra144 (2016)

AGE-RELATED EYE DISEASES ARE MULTIFACTORIAL


Factors beyond VEGF are detected in the vitreous of AMD & DR patients

AMD

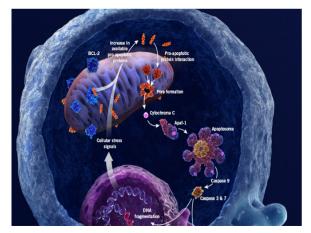
	nAMD	Controls	P value		
	Level	Level	Pre IVA		
	mean ± SD	mean ± SD	vs Control		
IL-1 $r\alpha$	0	0.77 ± 3.19	0.381		
IL-6	6.51 ± 5.24	78.2 ± 100	0.0029		
IL-7	10.9 ± 3.95	13.5 ± 12.8	0.465		
IL-8	6.00 ± 6.69	6.43 ± 6.84	0.448		
IL-9	0.087 ± 0.40	0.10 ± 0.41	0.483		
IL-12	12.1 ± 5.79	10.4 ± 9.11	0.268		
IL-13	1.97 ± 2.22	2.25 ± 2.65	0.448		
Eotaxin	3.76 ± 4.17	1.22 ± 2.39	0.035		
βFGF	0	0.71 ± 2.92	0.381		
G-CSF	0.28 ± 1.27	0	0.402		
IP-10	755 ± 645	$273\!\pm\!260$	3.00×10^{-4}		
MCP-1	229 ± 155	$204\!\pm\!112$	0.381		
MIP-1 α	0.41 ± 0.91	0.96 ± 2.35	0.4		
MIP-1 β	37.2 ± 15.6	37.2 ± 31.1	0.112		
VEGF	228 ± 176	132 ± 54.2	0.029		
*pg/ml in AH					

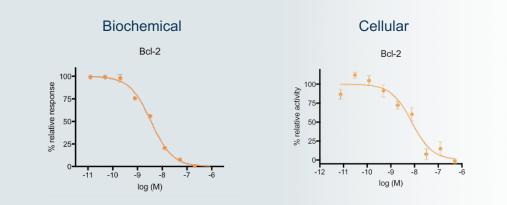
SASP	Control	DR/PDR	P-value	
IL-1b	4.0	12.9	<0.0001	
IL-ID	5.5	34.1	0.0001	
	43.3	212.5	0.0005	
IL-6	4.72	59.37	0.0003	
	6.9	45.2	0.0005	
	18.2	53.6	<0.0001	
IL-8	7.43	87.89	<0.0001	
	12.4	96.2	0.0003	
TNFa	63.9	155.8	<0.0001	
плга	12.3	160.7	0.0001	
	18.9	422.6	0.0028	
VEGF	23.5	1208.1	0.016	
	7.36	240.18	0.0031	
PDGF (BB)	0.84	15.64	0.0234	
	0.7	2.9	0.015	
PDGF (AA)	29.42	131.75	<0.0001	
FDGF (AA)	99.1	602.2	0.007	

DR

*pg/ml in VH

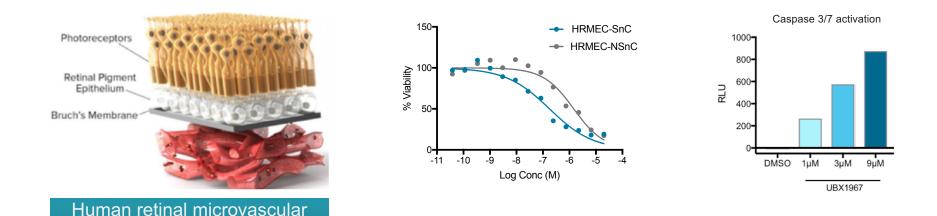
Oubaha et al., Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy, Sci. Transl. Med. 8, 362ra144 (2016)


OPPORTUNITY TO HALT AGE-RELATED EYE DISEASES


	Current SoC (a-VEGF)		Promise (senolytic)
MECHANISM	A-VEGF therapies are designed to remove VEGF, <i>only one of numerous SASP factors</i> implicated in age-related eye diseases	•	Utilize novel mechanism to <i>remove source</i> of <i>multiple SASP factors</i> (root cause of diseases)
Тх ІМРАСТ	Some patients <i>do not respond or become</i> <i>refractory</i> over time (>20%); long-term use <i>can cause complications</i>	•	<i>Improve efficacy</i> over a-VEGF therapies, provide options to anti-VEGF non-responders
Tx FREQUENCY	<i>Require frequent</i> (monthly/bi-monthly) <i>injections</i>	•	Significantly improve duration of response over anti-VEGF therapies, require less frequent dosing
MARKET	>\$8B in global annual sales	•	Increase number of treatable patients by improving treatment impact and duration of response

UBX1967: HIGHLY POTENT PAN-BCL2 SENOLYTIC

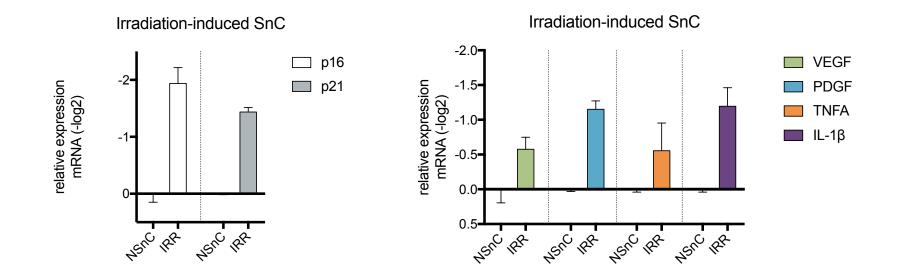
Lead development candidate for age-related diseases of the eye


•	Potent inhibitor of Bcl-2 anti-
	apoptotic family members

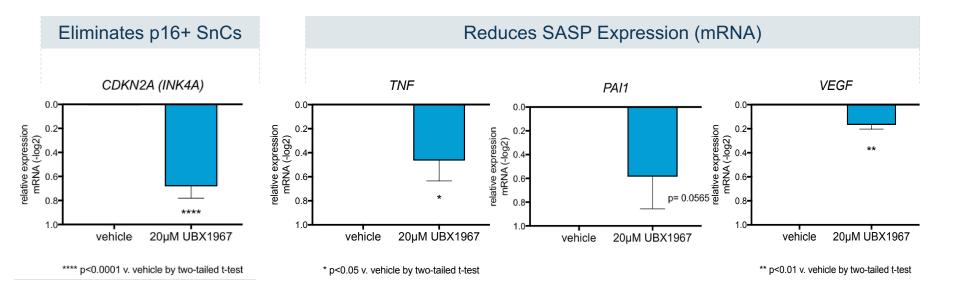
- Entering IND-enabling studies
- Licensed from Ascentage Pharma

	Biochemical (pK _i)			Cellular TE (plC ₅₀)		
	Bcl-xL	Bcl-2	Bcl-W	Bcl-xL	Bcl-2	
UBX1967	9.6 (± 0.2, n=4)	9.3 (± 0.2, n=4)	9.4 (± 0.2, n=5)	9.6 (± 0.3, n=5)	8.6 (n=2)	

HIGHLY POTENT PAN-BCL2 SELECTIVE SENOLYTIC

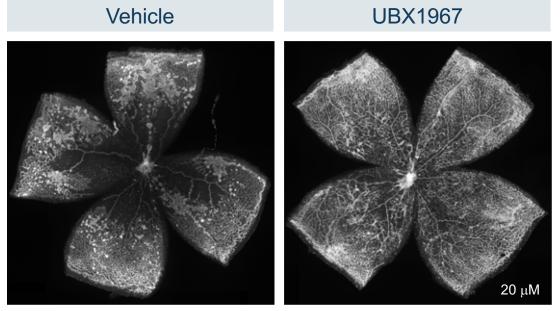

UBX1967 selectively eliminates HRMEC-SnCs over non-SnCs

endothelial cells (HRMEC)

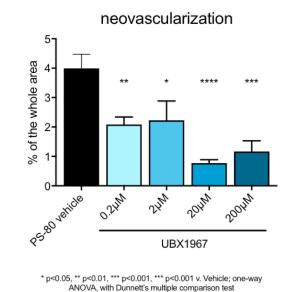

INDUCTION OF SASP FACTORS IN SENESCENT HRMECS

UBX1967 EFFICACY IN MOUSE OIR

Intravitreal dosing eliminates senescent cells and modulates SASP in mice



Oxygen-induced retinopathy (OIR) mouse model

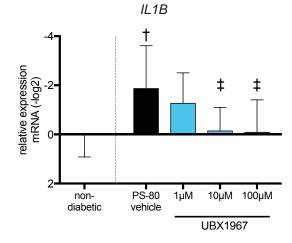


Unpublished UNITY Data

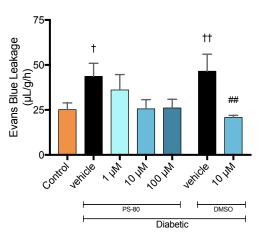
UBX1967 EFFICACY IN MOUSE OIR Intravitreal dosing improves retinal vasculature

Improves Retinal Vasculature

OIR mouse model

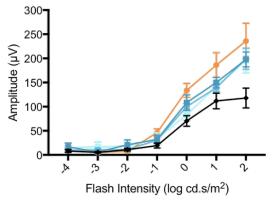


UBX1967 EFFICACY IN VIVO


Intravitreal dosing reduces SASP & vascular leakage and protects retinal function in diabetic mice

Vascular Leakage

UBX1967


† p<0.05 v. non-diabetic control by two-tailed t-test; ‡ p<0.05 v. Vehicle; one-way ANOVA, with Dunnett's multiple comparison test

[†] p<0.05 v. Non-diabetic control by two-tailed t-test

 †† p<0.01 v. Non-diabetic control by two-tailed t-test $^{\sharp\sharp}$ p<0.01 v. DMSO control by two-tailed t-test

A-wave amplitude: week 10

**** p<0.0001 v: Non-diabetic control; # p<0.05, ## p<0.01 v. Vehicle control by 2-way ANOVA with Tukey's multiple comparison test No significant difference between Non-diabetic control and Unity treatment groups

Streptozotocin (STZ) diabetic retinopathy mouse model

Unpublished UNITY Data

UBX1967 VALUE PROPOSITION IN MULTIPLE AGE-RELATED EYE DISEASES

DIFFERENTIATING PRECLINICAL FEATURES

Pan-Bcl senolytic: Potent inhibitor of Bcl family

Novel MOA: eliminates SnCs → reduces multicomponent SASP

in vivo efficacy \rightarrow activity in two preclinical models of retinopathy

PROPOSED CLINICAL BENEFITS

- Potential for improvements in visual function over anti-VEGF therapy
- Potential for efficacy in patients that don't respond to anti-VEGF therapy
- Potential for efficacy in combination with anti-VEGF therapy

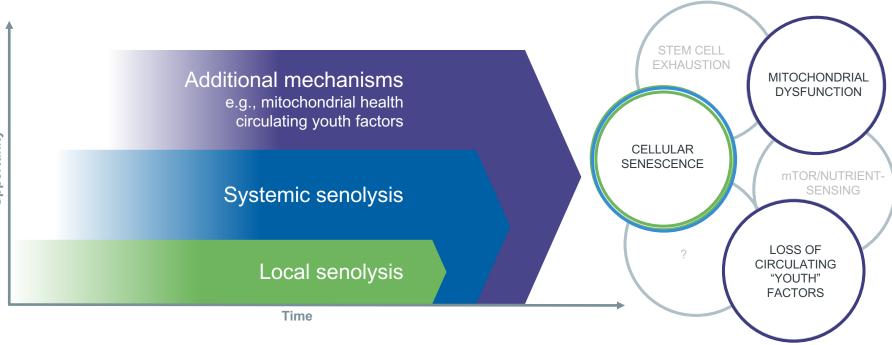
Potential to reduce SASP factors across multiple diseases of aging retina

SUMMARY

FINANCIAL METRICS AND MILESTONES

FINANCIAL

• \$171.1 million cash and investments at December 31, 2018


MILESTONES

- ✓ Q2 2018 Initiation of UBX0101 Phase 1 in patients with OA
- Q2 2019 Data from UBX0101 Ph1
- Early 2020 ophthalmology IND filing
 - enables multiple indications, including AMD, DR and DME

BROAD STRATEGY TO EXTEND HEALTHSPAN

Early effort in local senolytic therapy will expand to systemic senolytics and other mechanisms

UNITY plans to address multiple modalities to fully enable potential of age-related therapies

Health-span |helth' span | *noun* The period of one's life unburdened by the diseases of aging *See also: anti-aging, healthy longevity*

