CORPORATE PRESENTATION

January 2020

SPECIAL NOTE REGARDING FORWARD-LOOKING STATEMENTS

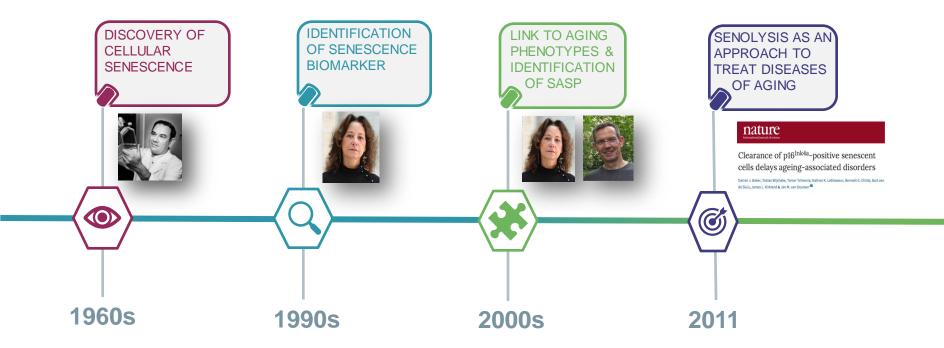
This presentation and the accompanying oral commentary contain forward-looking statements, including: statements related to our understanding of cellular senescence and the role cellular senescence plays in diseases of aging; our expectations regarding the potential berefits, activity, effectiveness and safety of senolytic drug candidates; the status of our our preclinical, clinical and regulatory development plans and pipeline; our expectations with regard to the timing and results of our clinical studies; and our expectations with regard to our ability b acquire, discover and develop additional drug candidates and advance such drug candidates into, and successfully complete, clinical studies. These statements involve substantial known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance σ achievements to be materially different from the information expressed or implied by these forward-looking statements. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. The forward-looking statements in this presentation represent our views as of the date of this presentation. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements at some point in the future, we have no current intention of doing so except to the extent required by applicable law. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

For a further description of the risks and uncertainties that could cause actual results to differ from those expressed in these forward-looking statements, as well as risks relating to the business of the Company in general, see UNITY's most recently filed Quarterly Report on Form 10-Q for the quarter ended June 30, 2019, filed with the Securities and Exchange Commission on August 7, 2019, as well as other documents that may be filed by UNITY from time to time with the Securities and Exchange Commission.

This presentation concerns drug candidates that are under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration. They are currently limited by Federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

At UNITY we are attacking the fundamental biology of aging to develop medicines that:

AGE-RELATED DISEASES


A NEW THERAPEUTIC APPROACH

LEADER IN CELLULAR SENESCENCE	 Emerging research shows that senescent cells are implicated in multiple diseases of aging Selectively eliminating senescent cells targets a root cause of age-related disease Building on our deep understanding of senescence biology and intellectual property, our approach generates potent and selective senolytic drug candidates Pursuing diseases with established endpoints and regulatory pathways
CLINICAL EVIDENCE	 Phase 1 study showed clear and substantial improvements in OA pain and function Initiated Phase 2 study of UBX0101 in 4Q19; 12 week data expected 2H20; 24 week data expected 1H21 Initiation of Phase 1b study for higher dose and repeat dose UBX0101 in 1H20 with data expected in 2H20 Ophthalmology IND expected in early 2020; Safety data in 2H20; Efficacy data in 1H21
EXPERIENCED TEAM	 Seasoned executive team with broad biotech experience Strong track record of delivering for patients and investors
FINANCIAL POSITION	 Cash equivalents and investments balance of \$120.3 million as of September 30, 2019 Cash runway into second half of 2021

UNITY

EMERGENCE OF NEW THERAPEUTIC APPROACH

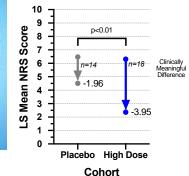
Leveraging cellular senescence biology

FROM SCIENTIFIC INSIGHT TO THERAPEUTIC BENEFIT

Letter | Published: 02 November 2011

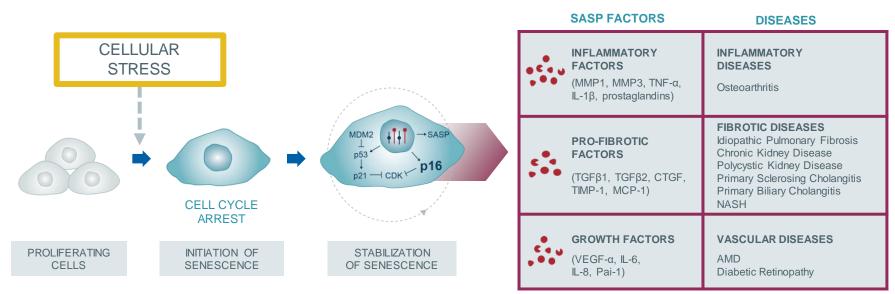
Clearance of p16^{Ink4a}-positive senescent cells delays ageing-associated disorders

Darren J. Baker, Tobias Wijshake, Tamar Tchkonia, Nathan K. LeBrasseur, Bennett G. Childs, Bart van de Sluis, James L. Kirkland & Jan M. van Deursen 🏁

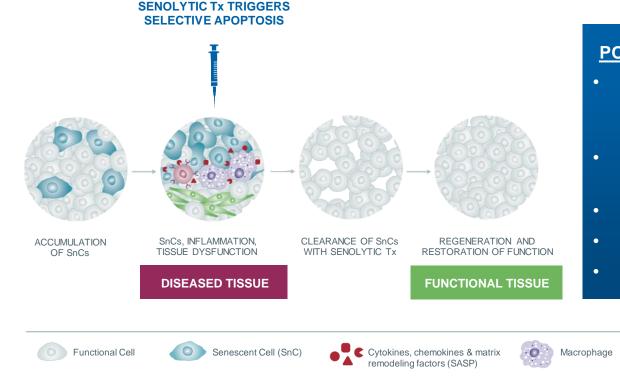


Phase 1 clinical study in osteoarthritis showed improvements in pain and function

NRS Change in LS Mean Score From Baseline to 12 Weeks



SENESCENT CELLS ARE IMPLICATED IN MULTIPLE DISEASES OF AGING

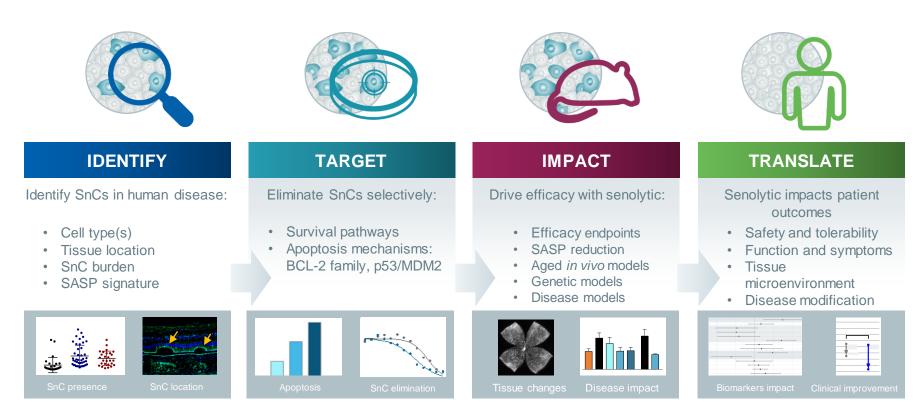

SASP

Senescent cells represent a potential root cause of diseases of aging

SASP = senescence-associated secretory phenotype

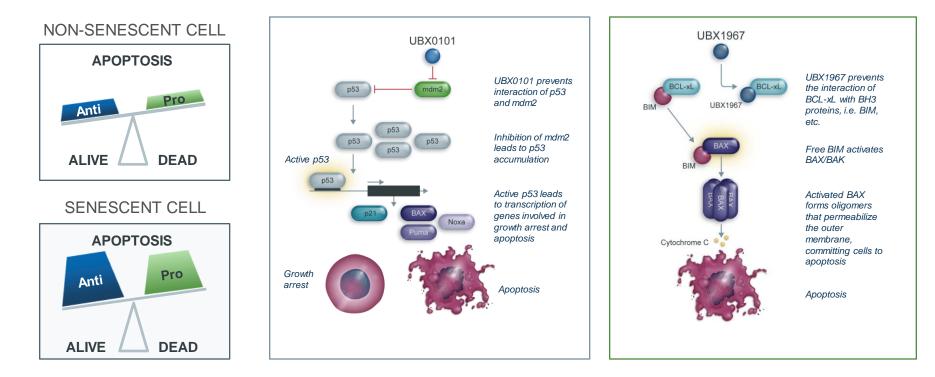
THE UNITY THERAPEUTIC APPROACH

POTENTIAL CLINICAL ADVANTAGES


- Improved magnitude of effect by eliminating source of multiple factors
- Longer duration of therapeutic benefit
- Reduced frequency of dosing

CD4+ T lymphocyte

Fibroblast


- Local administration
- Disease modification

OUR PLATFORM FOR GENERATING POTENT AND SELECTIVE SENOLYTIC DRUG CANDIDATES

SENOLYTICS SELECTIVELY ELIMINATE SENESCENT CELLS BY TARGETING WELL-DEFINED SURVIVAL PATHWAYS

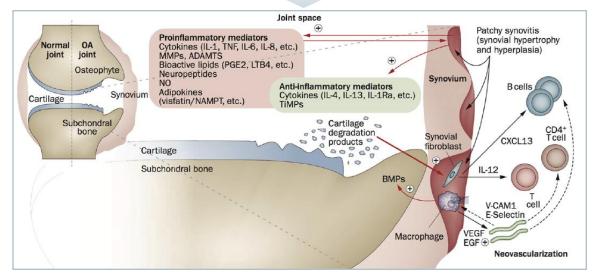
p53/mdm2

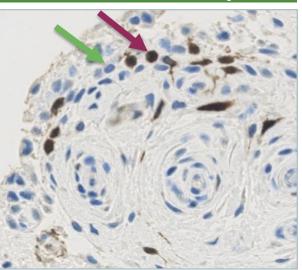
Bcl-2

UNITY PIPELINE Pursuing broad range of diseases with established endpoints and regulatory pathways

OSTEOARTHRITIS

(MUSCULOSKELETAL INDICATION)

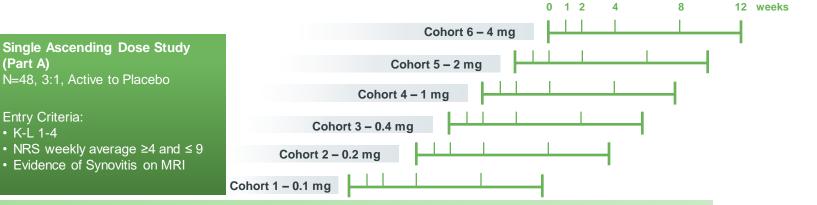

OSTEOARTHRITIS



~10-15% of population >60 years old; SoC is pain mitigation or joint replacement

OA IS BELIEVED TO BE A MULTIFACTORIAL DISEASE

In phase 0 study, senescence burden correlated with disease severity



Mathiessen et al. Arthritis Research and Therapy 2017

A senolytic may remove source of multiple factors implicated in OA

UBX0101 PHASE 1 PROGRAM

Primary SAD Study

Primary Objective: Safety and tolerability to 12 weeks

Secondary Objectives: Plasma PK and 11-Point NRS daily pain assessment, WOMAC (Pain, Stiffness, Function and Total), Plasma and Synovial fluid SASP/OA biomarkers to 12 weeks

Primary Objective: Safety and tolerability to 4 weeks

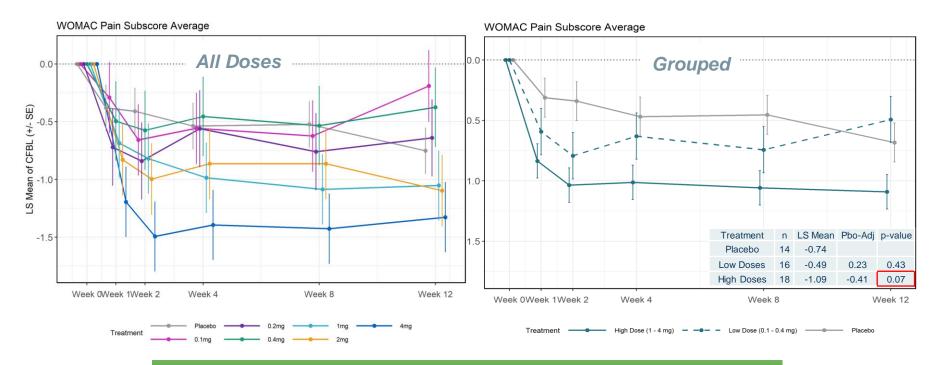
Secondary Objectives: Synovial fluid SASP/OA biomarkers, sparse plasma PK, WOMAC (Pain, Stiffness, Function and Total) to 4 weeks

UBX0101 WAS WELL TOLERATED

- No serious adverse events
- No AEs led to discontinuation from study
- No dose-dependence in AEs or in clinical laboratory findings
- The majority of AEs were mild (66% in Part A and 75% in Part B)

Treatment-emergent AE occurring in ≥ 2 patients

Preferred Term	Part A, 0.1- 4mg (N= 34) n (%)	Placebo (N= 14) n (%)	Part B (4 mg) (N= 20) n (%)	Placebo (N= 10) n (%)
Nasopharyngitis	2 (5.9)	1 (7.1)	0	0
Procedural pain	2 (5.9)	1 (7.1)	2 (10.0)	0
Arthralgia	3 (8.8)	1 (7.1)	0	1 (10.0)
Headache	4 (11.8)	1 (7.1)	0	0

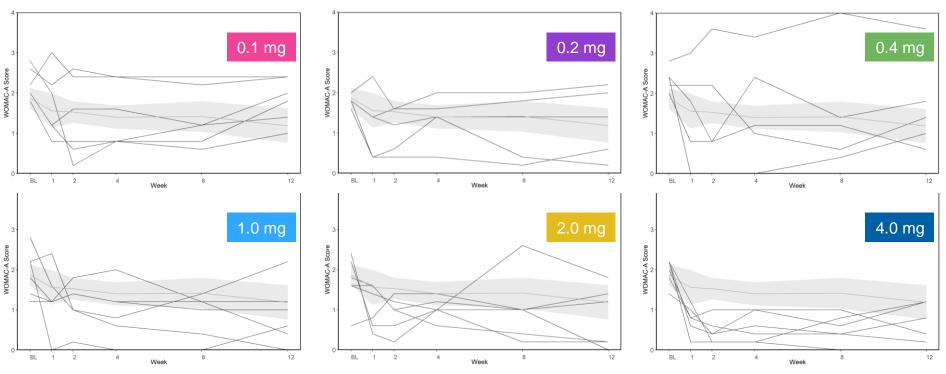


SINGLE DOSE OF UBX0101 DECREASED PAIN

WOMAC-A

5 item, 0-4 point scale where a 0.5 point change is considered clinically meaningful.

Durable, dose-dependent and substantial effect

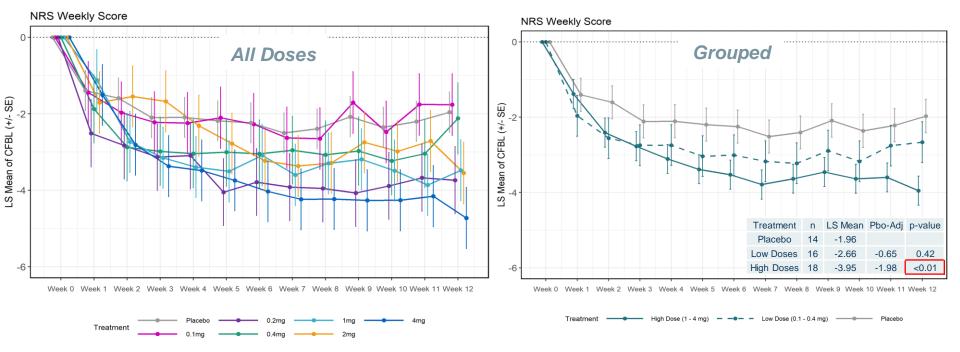


SINGLE DOSE OF UBX0101 DECREASED PAIN

WOMAC-A

5 item, 0-4 point scale where a 0.5 point change is considered clinically meaningful.

INDIVIDUAL VARIABILITY DECREASES AS DOSE INCREASES

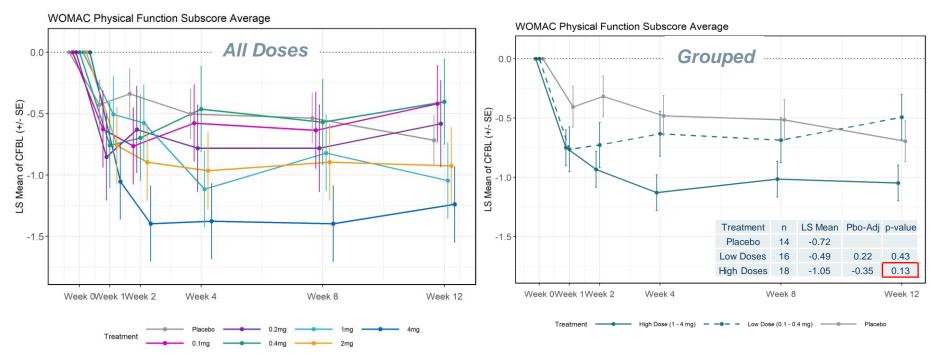


SINGLE DOSE OF UBX0101 DECREASED PAIN

Numerical Rating Scale (NRS)

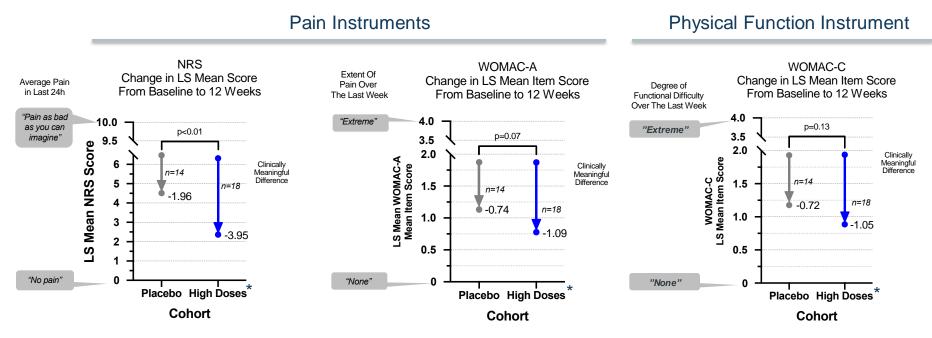
0-10 point scale where a **2 point change** is considered clinically meaningful.

Durable, dose-dependent and substantial effect



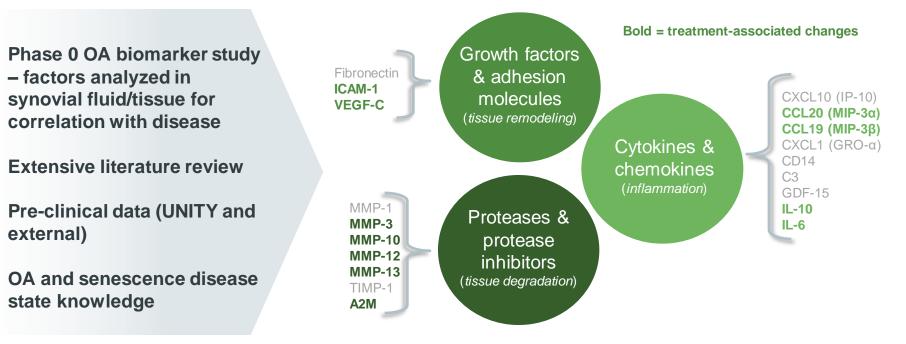
SINGLE DOSE OF UBX0101 IMPROVED FUNCTION

WOMAC-C


17 item, 0-4 point scale where a 0.3 point change is considered clinically meaningful.

Durable, dose-dependent and substantial effect

SINGLE DOSE OF UBX0101 IMPACTED PAIN AND FUNCTION AT 12 WEEKS

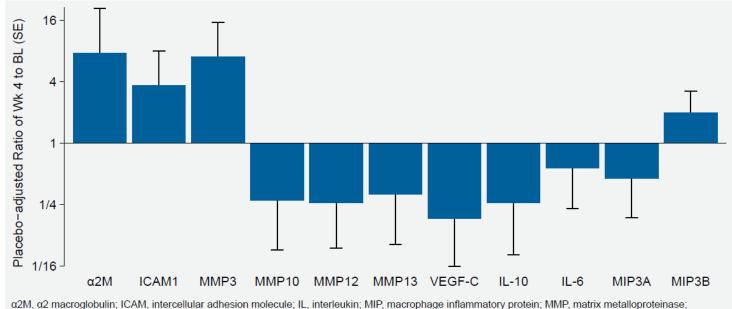


^{*} High Doses = 1, 2, and 4mg

Durable, dose-dependent and substantial effect across NRS, WOMAC-A and WOMAC-C

PHASE 1 MEASUREMENT OF SASP / OA BIOMARKERS Data is supportive of a senolytic mechanism

OA is believed to be a heterogeneous and multifactorial disease; UBX0101 injection altered joint environment

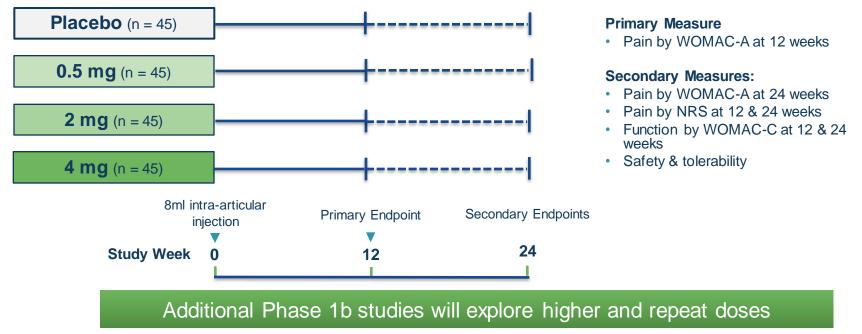


Selection Process

•

4 WEEK SYNOVIAL FLUID BIOMARKER DATA IS SUPPORTIVE OF A SENOLYTIC MECHANISM

VEGF, vascular endothelial growth factor. Paired fluid analyses from UBX0101 group, n=14; placebo group, n=6.



UBX0101 PHASE 2 STUDY DESIGN

Designed to substantiate Phase 1 efficacy and explore duration and disease modification

A randomized, double-blind, placebo-controlled study evaluating three doses of UBX0101 administered via a single intra-articular injection

POTENTIAL DIFFERENTIATING FEATURES OF UBX0101 IN OA

Novel MOA: eliminates SnCs \rightarrow potential root cause of disease

Large-Magnitude Effect: Clinically meaningful impact on pain and function

Durability \rightarrow sustained effect to 12 weeks in Phase 1 study

Phase 2 study designed to substantiate effects observed in Phase 1

OPHTHALMOLOGY

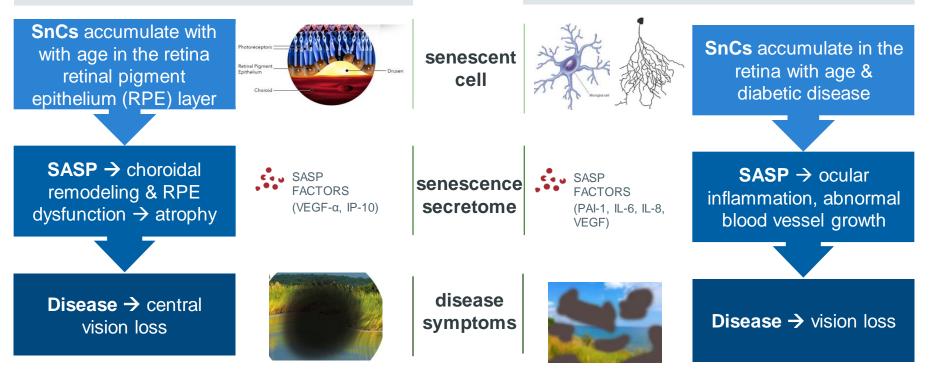
(AGE-RELATED EYE DISEASE INDICATIONS)

UNITY PIPELINE Pursuing broad range of diseases with established endpoints and regulatory pathways

AGE-RELATED EYE DISEASES ARE SIGNIFICANT PUBLIC HEALTH BURDENS

Leading causes of visual disability in aging populations, which may be treatable with a senolytic

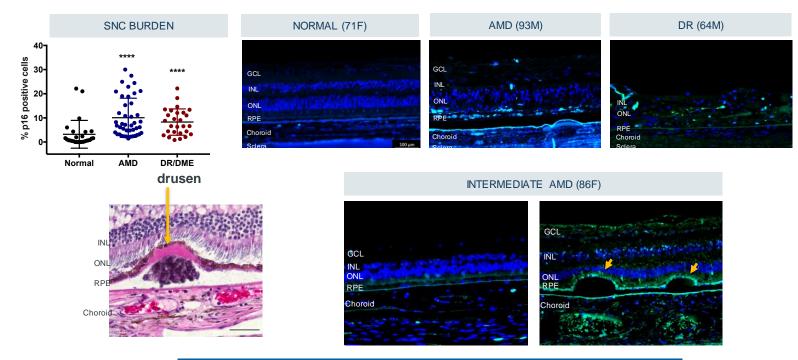
	AGE-RELATED MACULAR DEGENERATION (AMD)	DIABETIC RETINOPATHY (DR)	DIABETIC MACULAR EDEMA (DME)
GLOBAL IMPACT	 Leading cause of visual disability in industrialized world; 3rd leading cause globally Aging is the greatest risk factor 	 Leading cause of vision loss in middle-aged and elderly Impacts 8% of people >65 years old 	 A manifestation of DR that is the primary cause of vision loss for people with diabetes
GLOBAL PREVALANCE	 170M people affected Expected to increase to 285M+ by 2040 	 90M+ people affected; 28M with vision-threatening disease stages ~33% of people with diabetes have signs of DR 	 20M+ people affected
CURRENT TREATMENTS	 Anti-VEGF agents, laser therapy 	 Diabetes control, anti-VEGF agents, laser photocoagulation 	 Diabetes control, corticosteroids, anti-VEGF agents, laser photocoagulation
GLOBAL MARKET SIZE		 >\$8B in global annual anti-VEGF sale 	es



ROLE OF SENESCENCE IN AGE-RELATED EYE DISEASE

SnCs accumulate in the retina, potentially contributing to disease phenotypes

AMD


DR & DME

SENESCENCE BURDEN IN AMD AND DR/DME

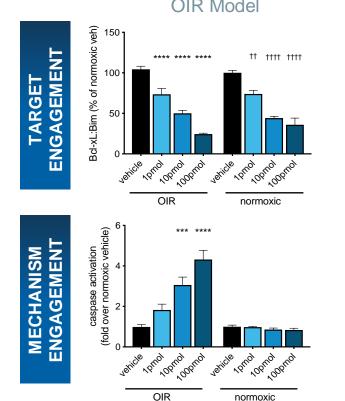
- Age-related eye diseases are multifactorial
- SnC burden increases with disease stage
- DR/DME patients show SnC in the retina and Choroid

UBX1967 DEMONSTRATES EFFICACY IN MOUSE OIR Oxygen induced retinopathy (OIR) model

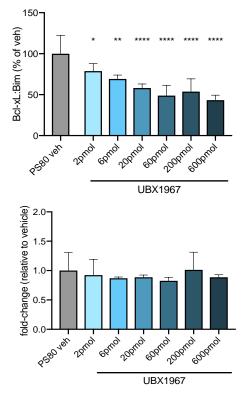
Vehicle **UBX1967** 20 µM

Improves Retinal Vasculature

neovascularization


* p<0.05, ** p<0.01, *** p<0.001, *** p<0.001 v. Vehicle; one-way ANOVA, with Dunnett's multiple comparison test

Intravitreal dosing improves retinal vasculature


UBX1967 ENGAGES BCL-xL AND SELECTIVELY PROMOTES APOPTOSIS IN HYPEROXIC MOUSE RETINA

OIR Model

3 mo Healthy

Unpublished UNITY Data

UBX1967 VALUE PROPOSITION IN MULTIPLE AGE-RELATED EYE DISEASES

Ô

DIFFERENTIATING PRECLINICAL FEATURES

Bcl senolytic: Potent inhibitor of Bcl family

Novel MOA: eliminates SnCs → reduces multicomponent SASP

in vivo efficacy → activity in two preclinical models of retinopathy

PROPOSED CLINICAL BENEFITS

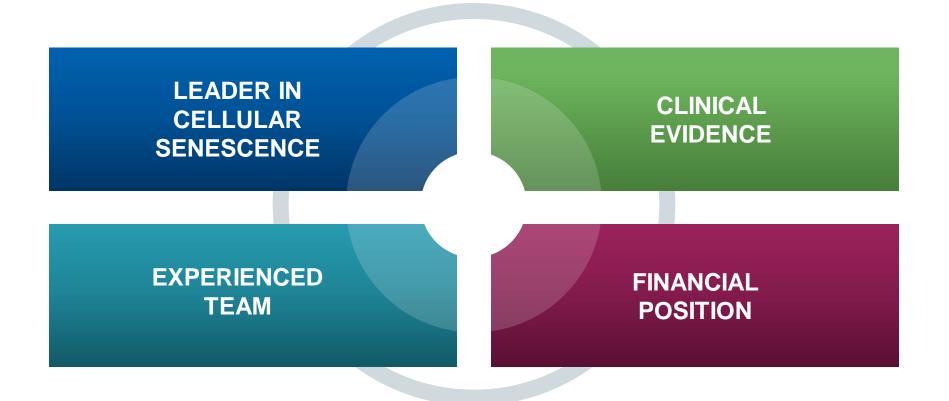
- Potential for improvements in visual function over anti-VEGF therapy
- Potential for efficacy in patients that don't respond to anti-VEGF therapy
- Potential for efficacy in combination with anti-VEGF therapy

Potential to reduce SASP factors across multiple diseases of aging retina

SUMMARY

FINANCIAL METRICS AND MILESTONES

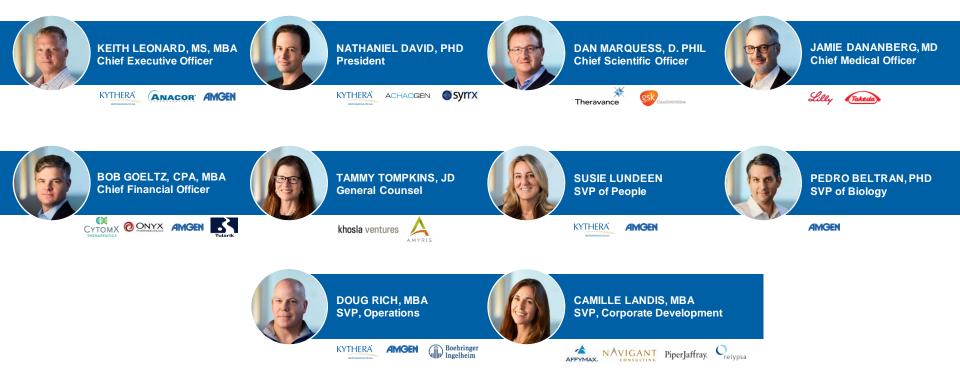
FINANCIAL


- \$120.3 million cash and investments at September 30, 2019
- Cash runway into 2nd half of 2021

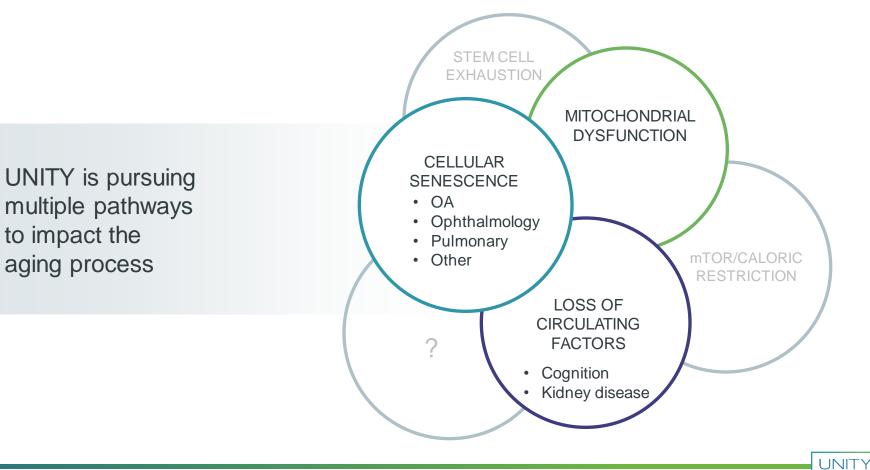
MILESTONES

- Q2 2019 Data from UBX0101 Ph1
- Q4 2019 Initiate UBX0101 Ph2
- Early 2020 Anticipate ophthalmology IND filing
 - To enable multiple indications (e.g., AMD, DR and DME)
 - Safety data expected 2H 2020; Efficacy data expected 1H 2021
- 2H 2020 Expect 12 week results from UBX0101 Ph2
- 1H 2021 Expect 24 week results from UBX0101 Ph2

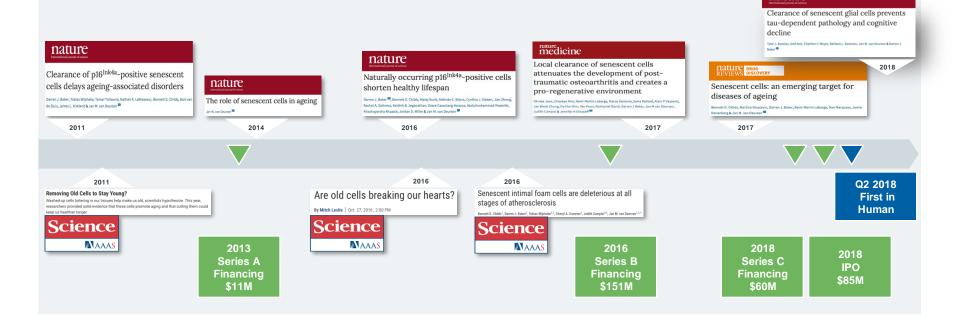
UNITY BIOTECHNOLOGY


At UNITY we are developing medicines designed to:

AGE-RELATED DISEASE



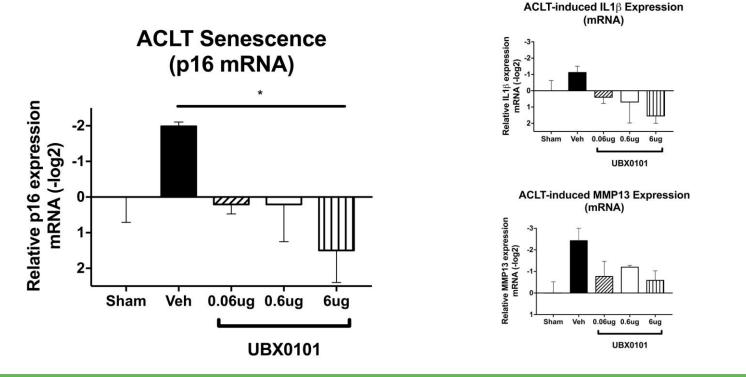
MANAGEMENT An experienced team with a track record of success


MULTIPLE MECHANISMS DRIVE AGING

BIOTECHNOLOG

UNITY: ESTABLISHING LEADERSHIP IN HEALTHSPAN

Robust funding for R&D with notice in prestigious scientific journals

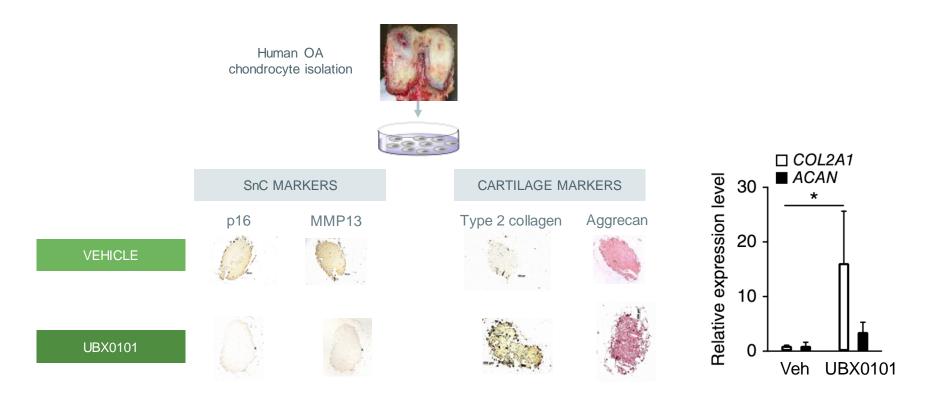


nature

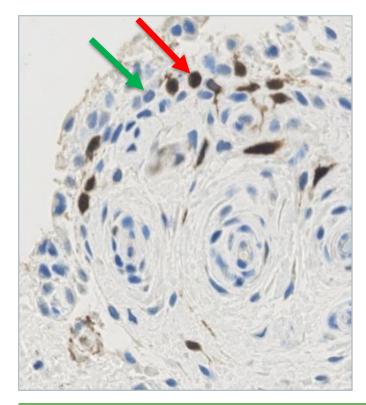
UBX0101 EFFICACY IN VIVO

Intra-articular dosing eliminates senescent cells and modulates SASP in mice

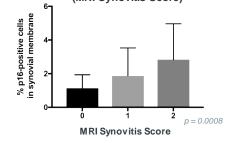
* *p*-value ≤ .05

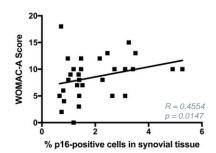

IA dosing of UBX0101 eliminates p16⁺ SnCs and reduces OA-relevant SASP factors

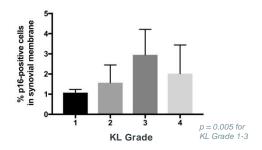
Unpublished UNITY Data


UBX0101 EFFICACY EX VIVO

Diseased tissue exposed to UBX0101 upregulates expression of key components of cartilage


INCREASED SnCs OBSERVED IN KNEES OF OA PATIENTS


Relationship between degree of senescence (p16) and synovial fluid SASP Factors (IL-6)


Relationship between degree of senescence (p16) and synovial membrane inflammation (MRI Synovitis Score)

Relationship between degree of senescence (p16) and patient reported pain scores (WOMAC-A)

Relationship between degree of senescence (p16) and stage of OA disease (KL Grade)

In 30 patients, senescence burden correlated directly with pain, arthritic severity, and inflammation

PATIENT DEMOGRAPHICS

	Part A		Part B	
	Total Subjects (n=48)	Cohorts Balanced	Total Subjects (n=30)	Cohorts Balanced
Age (yrs)	62.4	Yes	61.2	Yes
Gender (M:F)	16:32	No	15:15	Yes
Race (%) (Asian/African American/Pacific Islander/White/American Indian)	0 / 6.3 / 0 / 89.6 / 4.2	Yes	0 /16.7 / 0 / 82.3	Yes
Ethnicity (%) (Hispanic/Non-Hispanic/Unknown)	33.3 / 64.6 / 2.1	No	40 / 60 / 0	Yes
Weight (kg)	82.20	Yes	84.50	Yes
Height (cm)	165.0	Yes	167.0	Yes
BMI (kg/m^2)	30.25	Yes	29.10	Yes

BASELINE PATIENT CHARACTERISTICS

Baseline Characteristic	Part A (UBX-0101 Intra- Articular Dose in mg)				Part B				
Characteristic		Mean (SD)					Mean (SD)		
Dose Group (n)	Placebo (n=14)	0.1 (n=6)	0.2 (n=5)	0.4 (n=5)	1.0 (n=6)	2.0 (n=6)	4.0 (n=6)	Placebo (n=10)	4.0 (n=20)
K-L Score	2.58 (0.90)	2.83 (0.41)	3.00 (1.22)	3.00 (1.22)	2.67 (0.52)	2.50 (0.84)	3.17 (0.41)	2.50 (0.85)	2.47 (1.12)
11-pt Synovitis Score	13.36 (5.14)	10.33 (5.79)	16.20 (4.21)	8.25 (5.19)	12.67 (4.80)	12.00 (5.59)	11.17 (5.38)	Not measur	ed in Part B
Yrs Dx with OA	6.84 (4.04)	15.4 (15.3)	11.3 (4.39)	10.3 (6.57)	13.4 (10.1)	11.6 (8.39)	6.84 (4.05)	10.1 (8.73)	8.64 (6.36)
BL WOMAC total	47.14 (12.96)	54.17 (7.41)	37.60 (11.55)	58.80 (10.08)	50.67 (14.07)	41.67 (11.45)	46.67 (6.44)	52.40 (12.57)	50.45 (16.37)
BL WOMAC A Pain	9.36 (2.21)	11.17 (1.94)	9.00 (0.71)	11.80 (1.48)	9.67 (2.94)	8.50 (3.15)	9.83 (1.60)	11.30 (1.89)	11.10 (3.40)
BL WOMAC B Stiffness	4.93 (1.27)	4.83 (0.98)	4.80 (0.84)	5.00 (1.41)	4.50 (1.52)	4.00 (0.89)	3.67 (0.82)	4.40 (1.35)	4.40 (1.47)
BL WOMAC C Function	32.86 (10.80)	38.17 (5.08)	23.80 (10.94)	42.00 (8.28)	36.50 (10.62)	29.17 (9.43)	33.17 (5.27)	36.70 (10.24)	34.95 (12.70)
BL Weekly Average NRS	6.47 (1.11)	5.90 (1.40)	6.30 (0.53)	6.76 (1.10)	6.49 (1.55)	6.15 (1.18)	6.29 (1.42)	Not measur	ed in Part B

EFFICACY: PART A – IMPRESSION OF CHANGE - PGIC Grouped Dose Cohorts – 12 Week

PGIC	Part A (UBX-0101 Intra-Articular Dose in mg)			
Binary Variable	Estimated Probability (95% CI)			
Dose Group (n)	Placebo	Low Doses	High Doses	
	(n=14)	(n=16)	(n=18)	
Much Improved or Better	42.9 %	50.0 %	61.1 %	
	(20.6 - 68.4%)	(40.0-60.0%)	(50.0- 66.7%)	

PGIC score demonstrated dose response

Low Dose - (0.1, 0.2, 0.4 mg) High Dose - (1.0, 2.0, 4.0 mg)

Consistent efficacy demonstrated in Part A across multiple measurements including NRS, WOMAC-A, WOMAC-C & PGIC

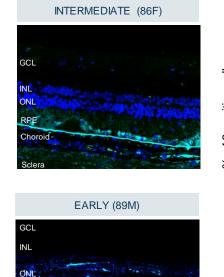
PART B MEASURES OF PAIN & FUNCTION DIRECTIONALLY CONSISTENT WITH PART A RESULTS

WOMAC-A

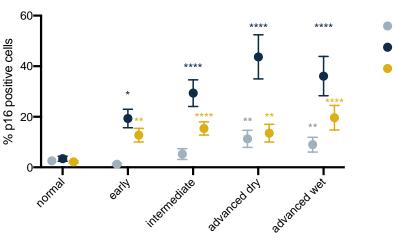
5 item, 0-4 point scale where a 0.5 point change is considered clinically meaningful.

WOMAC-C

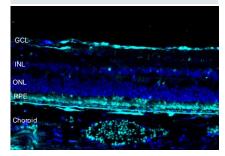
17 item, 0-4 point scale where a 0.3 point change is considered clinically meaningful.


	WOMAC-A		WOM	AC-C
	CFBL	Pbo-Adj (P-value)	CFBL	Pbo-Adj (P-value)
Placebo (n=10)	-0.72		-0.60	
4.0 mg (n=20)	-0.87	-0.15 (0.62)	-0.77	-0.17 (0.60)

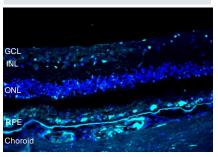
Part B procedure for optimal collection of synovial fluid following treatment included complete drainage of the knee, and if fluid yield is insufficient, introducing saline and then repeating the withdrawal



SNC BURDEN INCREASES WITH DISEASE STAGE


*p<0.05; **p<0.01; ****p<0.0001 v. Normal by Kruskal-Wallis with Dunn's multiple comparisons test

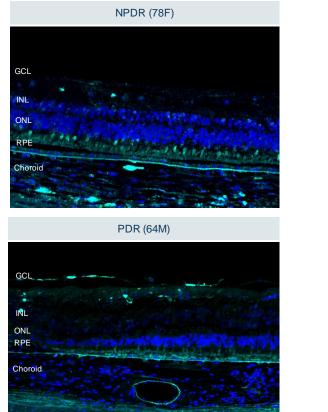
ADVANCED DRY (93F)


retina

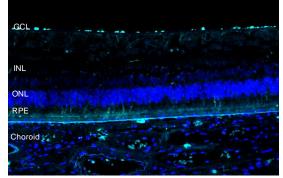
RPE

choroid

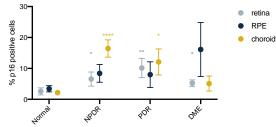
Senolysis has the opportunity to halt disease progression from an early stage


Unpublished UNITY Data

RPE

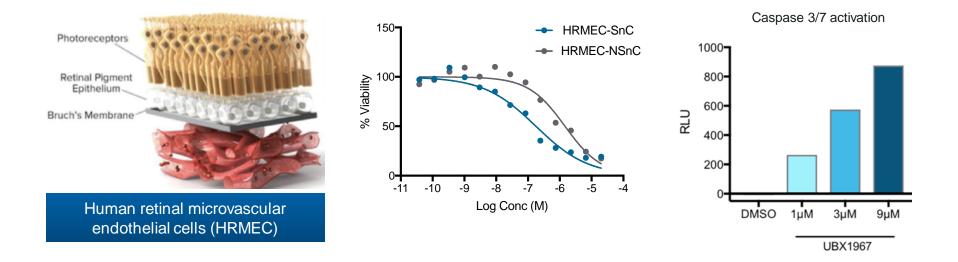

Choroid

DR/DME PATIENTS SHOW SNC IN THE RETINA AND CHOROID



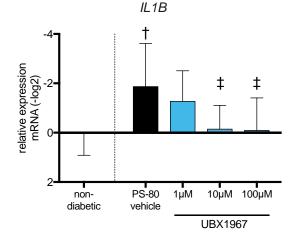
DME (54F)

DR SNC BURDEN

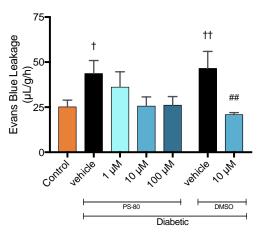


*p<0.05; **p<0.01; ****p<0.001 v. Normal by Kruskal-Wallis with Dunn's multiple comparisons test

HIGHLY POTENT SENOLYTIC THAT TARGETS BCL-2 FAMILY PROTEINS



UBX1967 selectively eliminates HRMEC-SnCs over non-SnCs



UBX1967 DEMONSTRATES EFFICACY IN MOUSE STZ Streptozotocin (STZ) diabetic retinopathy model

† p<0.05 v. non-diabetic control by two-tailed t-test; ‡ p<0.05 v. Vehicle; one-way ANOVA, with Dunnett's multiple comparison test

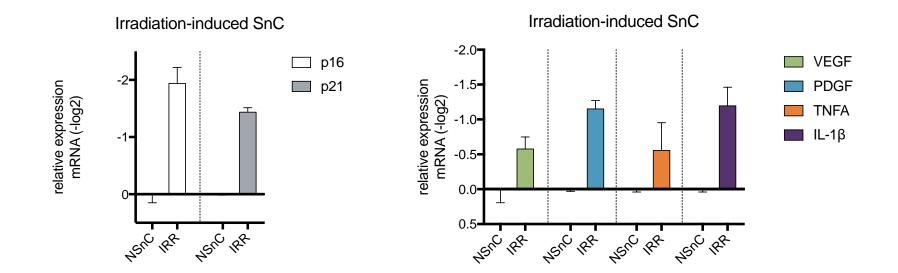
Vascular Leakage

UBX1967

[†] p<0.05 v. Non-diabetic control by two-tailed t-test

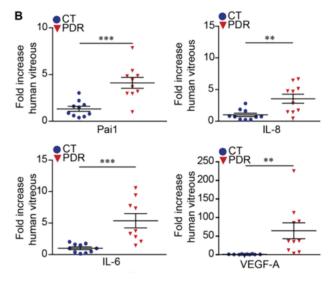
⁺⁺ p<0.01 v. Non-diabetic control by two-tailed t-test ## p<0.01 v. DMSO control by two-tailed t-test A-wave amplitude: week 10

**** p<0.0001 v. Non-diabetic control; # p<0.05, ## p<0.01 v. Vehicle control by 2-way ANOVA with Tukey's multiple comparison test No significant difference between Non-diabetic control and Unity treatment groups


 $1 \mu M = -1.7 \text{ ng of UBX1967}$

Intravitreal dosing reduces SASP & vascular leakage and protects retinal function in diabetic mice

Unpublished UNITY Data



AMD

	nAMD	Controls	P value
	Level	Level	Pre IVA
	mean ± SD	mean \pm SD	vs Control
IL-1 $r\alpha$	0	0.77 ± 3.19	0.381
IL-6	6.51 ± 5.24	78.2 ± 100	0.0029
IL-7	10.9 ± 3.95	13.5 ± 12.8	0.465
IL-8	6.00 ± 6.69	6.43 ± 6.84	0.448
IL-9	0.087 ± 0.40	0.10 ± 0.41	0.483
IL-12	12.1 ± 5.79	10.4 ± 9.11	0.268
IL-13	1.97 ± 2.22	2.25 ± 2.65	0.448
Eotaxin	3.76 ± 4.17	1.22 ± 2.39	0.035
βFGF	0	0.71 ± 2.92	0.381
G-CSF	0.28 ± 1.27	0	0.402
IP-10	755 ± 645	273 ± 260	$3.00 imes10^{-4}$
MCP-1	229 ± 155	204 ± 112	0.381
MIP-1 α	0.41 ± 0.91	0.96 ± 2.35	0.4
MIP-1 β	37.2 ± 15.6	37.2 ± 31.1	0.112
VEGF	228 ± 176	132 ± 54.2	0.029

SASP	Control	DR/PDR	P-value		
IL-1b	4.0	12.9	<0.0001		
IL-TO	5.5	34.1	0.0001		
	43.3	212.5	0.0005		
IL-6	4.72	59.37	0.0003		
	6.9	45.2	0.0005		
	18.2	53.6	<0.0001		
IL-8	7.43	87.89	<0.0001		
	12.4	96.2	0.0003		
TNE	63.9	155.8	<0.0001		
TNFa	12.3	160.7	0.0001		
	18.9	422.6	0.0028		
VEGF	23.5	1208.1	0.016		
	7.36	240.18	0.0031		
	0.84	15.64	0.0234		
PDGF (BB)	0.7	2.9	0.015		
	29.42	131.75	<0.0001		
PDGF (AA)	99.1	602.2	0.007		

DR

*pg/ml in AH

*pg/ml in VH

Oubaha et al., Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy, Sci. Transl. Med. 8, 362ra144 (2016)

Sato (2018)